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APPROXIMATION OF THE EIGENVALUES FOR HEAT
TRANSFER IN LAMINAR TUBE SLIP FLOW
* By Robert M. Inman¥
“Lewis Research Center
Natiq;gl{Aeronautics and‘Spa?e Administration
Cleveland, Ohio
For convective heat transfer in laminar continuum tube flow with
uniform wall heat flux, Sellars et all have obtained asymptotic formulas
for the eigenvalues and coefficients through a generalization of constant
wall temperature results. An improved and more direct treatment has been
presented by Dzungz.
The advent of space flight has brought about increased interest in

the heat transfer to low-density gas flow in tubes. Sparrow and Lin®

have considered the fully developed heat transfer in circular tubes under

slip-flow conditions. It is of interest to determine the possible appli-
cation of the method of Sellars et al to laminar tube slip flow.

" We wish to find solutions of

(a/an) [n(ar,/dn)] + A (2f)nR, = O (1)
subject to
R (0) =1 ' (2)
and
[(an/dn)] =0 at =0 and 7 =1 (3)

where 1 is the dimensionless radial distance (r/rg), f(n) is the

dimensionless velocity distribution,
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£(n) = u(n) /T = 2[1 - 4% + 4a]/[1 + 8a] (4)
and o = (éuﬂd). The function Ry represents the radial temperature
distribution in the thermal entrance region, and Ap 1is the eigenvalue.
€, 1is the velocity slip coefficient®. The velocity distribution as
given in Eq. (4) assumes that thermal creep is negligible.

In accordance with the method of Sellars et al., a solution of
the form
R (n) = explg(n)] (s)
is considered, where
g=Negy+e +(g/vA) +. .. (6)
and, since A 1is assumed to be large, only the first two terms of the
above serles are retained. It can be shown that R, 1is given from

Egs. (5) and (8) as

n
Ry = {A exp 11/3\;/‘ (Zf)l/2 an| +
0

~
N
B exp -i-\/‘)\—;/ (2£)Y/2 an|\ [n1/2(22)1/4 (7)
0

excluding the singular point n = O. It should be noted that, for con-
tinuum flow (o = O), a singularity also exists at 17 = 1, since
[f(l)]m=o = 0. This has required the developement of an alternate solution
valid near 7 = 11,2, For slip flow, no singularity exists at 1 = 1, since
[f(l)]a%o = 80/(1 + 8a) = ug/W, where Wy is the slip velocity.

The coefficients A and B are determined from continuation of
Eq. (7) to the central zone 1 = 0, where Rn(q) can be approximated by a

Bessel function



R (n) = JO(-,/zxnf(OS 1) 7% << 1 (8)

where f(0) = 2(1 + 4a)/(1 + 8a) = u./U. From the asymptotic expression

of Bessel functions, the coefficients are determined, so that
Z2/hee €

Rn(n) = (ﬂq)“l/z(Z%#ﬁjl/4 cos[-\ﬁ\_n I - 11:/4] (9)

where

m
sz (Zf)l/2 dn = [‘q-‘/l + 4q - 72 +
0

(1 + 4a)arc sin(n/{/l—ME)J/-\/lTBa (10)

The slope of Rp(n) at the wall is found by differentiating

Eq. (9) and setting n = 1; the result is

R'(1) = (80)"1/2(1 + 80)1/4(40) -5/\1/4[(E + Frp)cos 1, + (E - Fry)sin 1]

(11)

where v, = /A Ip, Iy = /l (21“)1/2 dn, E= 1 - 4a, and
0O

~

F= 4(4@)5/2/[-\/4701 + (1 + 4a)arc sin(1/4/1 + 4:00)].

Setting Rr'l(l) = 0 yields a series of elgenvalues A with the

n

corresponding eigenfunction R, as roots of the equation

tan 1, = (Fry + E)/(Fr,, - E) (12)




The coefficients c,, of the series expansion for uniform wall heat

flux are determined by the requirement thatds4

- can(;) = - [(nz ~Et-ar)- (302 -1 n’*)(uf-) + (z'lz)(%)z] (13)

which, with the orthogonality property of the eigenfunctions, leads to

00

¢y = 1[INEPR/ M) 1pey pen, (1)

Hence,
Dy = CyRy(1) = - (16a)/[E + (EB/F) + Fri] (15)

These expressions were derived on the assumption that )n is
large and consequently are suppésedly Valid only in that limit. However,
‘the use of Egs. (12) and (15) gives values that appear to "fit" between
results for continuum flow (usu= 0) and for slug flow (ug/T - 1) even
for the values of n as small as 2, as can be seen from the comparison
éhown in Table I. The results for continuum flow were obtained from
expressions presented by,DzungB, while for siug fiow,
obtained as the roots of Jl(,/éig) = 0, where Jl is a Bessel function
of the first kind and of first order; the coefficients D, are then ob-
tained from the simple result D, =-1/An.

It should be mentioned that the first few eigenvalues apparently

become slightly inaccurate (i.e., do not fit) as (uw /T~ 0). Also, inter-

actions between the velocity and temperature fields, such as thermal creep,



From this comparison it appears that the method of Sellars, et al. has
definite application to determining the eigenvalues and coefficiénts for heat
transfer in laminar tube slip flow. The author is currently extending the
treatment outlined here to the problem of heat transfer to laminar slip

flow in a parallel plate channel.
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TABLE I
w/i=0| 2/5 | 2/3 1
VAL| 2.531 |=m-——ew | 2.65 2.710
WAz | 4.578 | 4.71 4.75 4,955
VAz| 6.599 | 6.78 6.88 7.195
~/Ay| 8.610 | 8.81 9.00 9.425
D | -0.1985 | =mmmmm- -0.1670 | =0.1360
Dz | -0.0693 | -0.0594 | ~0.0515 | -0.0406
Dz | -0.0365 | -0.0306 | -0.0247 | -0.0194
Dy | -0.0230 |-0.0217 [ -0.0145 | -0.0113




